Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb.

نویسندگان

  • H Kashiwadani
  • Y F Sasaki
  • N Uchida
  • K Mori
چکیده

Individual glomeruli in the mammalian olfactory bulb represent a single or a few type(s) of odorant receptors. Signals from different types of receptors are thus sorted out into different glomeruli. How does the neuronal circuit in the olfactory bulb contribute to the combination and integration of signals received by different glomeruli? Here we examined electrophysiologically whether there were functional interactions between mitral/tufted cells associated with different glomeruli in the rabbit olfactory bulb. First, we made simultaneous recordings of extracellular single-unit spike responses of mitral/tufted cells and oscillatory local field potentials in the dorsomedial fatty acid-responsive region of the olfactory bulb in urethan-anesthetized rabbits. Using periodic artificial inhalation, the olfactory epithelium was stimulated with a homologous series of n-fatty acids or n-aliphatic aldehydes. The odor-evoked spike discharges of mitral/tufted cells tended to phase-lock to the oscillatory local field potential, suggesting that spike discharges of many cells occur synchronously during odor stimulation. We then made simultaneous recordings of spike discharges from pairs of mitral/tufted cells located 300-500 microm apart and performed a cross-correlation analysis of their spike responses to odor stimulation. In approximately 27% of cell pairs examined, two cells with distinct molecular receptive ranges showed synchronized oscillatory discharges when olfactory epithelium was stimulated with one or a mixture of odorant(s) effective in activating both. The results suggest that the neuronal circuit in the olfactory bulb causes synchronized spike discharges of specific pairs of mitral/tufted cells associated with different glomeruli and the synchronization of odor-evoked spike discharges may contribute to the temporal binding of signals derived from different types of odorant receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states.

Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two types of projection neurons, tufted cells and mitral cells, which differ in signal timing and firing frequency in response to odor inhalation. Whereas tufted cells respond with early-onset high-frequency burst discharges starting at the middle of the inhalation phase of sniff, mitral cells show odor responses ...

متن کامل

Olfactory bulb mitral-tufted cell plasticity: odorant-specific tuning reflects previous odorant exposure.

Olfactory system second-order neurons, mitral-tufted cells, have odorant receptive fields (ORFs) (molecular receptive ranges in odorant space for carbon chain length in organic odorant molecules). This study quantified several dimensions of these excitatory odorant receptive fields to novel odorants in rats and then examined the effects of passive odorant exposure on the shape of the ORF-tuning...

متن کامل

Sniff Rhythm-paced Fast and Slow Gamma Oscillations in the Olfactory Bulb: Relation to 1 Tufted and Mitral Cells and Behavioral States 2 3

19 20 Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two 21 types of projection neurons, tufted cells and mitral cells, which differ in signal timing 22 and firing frequency in response to odor inhalation. Whereas tufted cells respond with 23 early-onset high frequency burst discharges starting at the middle of the inhalation 24 phase of sniff, mitral cells sh...

متن کامل

Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb.

Mitral and tufted cells in the mammalian olfactory bulb are principal neurons, each type having distinct projection pattern of their dendrites and axons. The morphological difference suggests that mitral and tufted cells are functionally distinct and may process different aspects of olfactory information. To examine this possibility, we recorded odorant-evoked spike responses from mitral and mi...

متن کامل

External tufted cells drive the output of olfactory bulb glomeruli.

Odors synchronize the activity of olfactory bulb mitral cells that project to the same glomerulus. In vitro, a slow rhythmic excitation intrinsic to the glomerular network persists, even in the absence of afferent input. We show here that a subpopulation of juxtaglomerular cells, external tufted (ET) cells, may trigger this rhythmic activity. We used paired whole-cell recording and Ca(2+) imagi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 4  شماره 

صفحات  -

تاریخ انتشار 1999